AQUATIC TOXICITY TESTS WITH SUBSTANCES THAT ARE POORLY SOLUBLE IN WATER AND CONSEQUENCES FOR ENVIRONMENTAL RISK ASSESSMENT

GABRIEL S. WEYMAN,*† HANS RUFLI,‡ LENNART WELTJE,§ EDWARD R. SALINAS,|| and MARC HAMITOU#

†Makhteshim Agan (UK) Ltd, Thatcham, UK
‡Ecotoxicolutions, Basel, Switzerland
§BASF SE, Limburgerhof, Germany
||BASF SE, Ludwigshafen, Germany
#Smithers Viscient, Horn, Switzerland

(Submitted 2 September 2011; Returned for Revision 29 November 2011; Accepted 4 March 2012)

Abstract—Aquatic toxicity tests with substances that are poorly soluble in water have been conducted using different methods, and estimates of toxicity have varied accordingly. The present study illustrates differences in toxicity values resulting from variation in test designs and solution preparation methods, and offers guidance on the best way to conduct these tests. Consequences for environmental risk assessment and classification are also discussed. The present study mainly considers active ingredients of plant protection products, but is also considered relevant to other chemicals. It is recommended that toxicity tests be conducted only up to the saturation limit, dispersants avoided, and solvents used only if necessary to support handling and speed of dissolution. Analytical measurements of exposure concentrations should reflect what organisms are exposed to. If acute toxicity testing at the saturation limit yields no adverse effects, further testing should not normally be required; the toxicity value of the endpoints should be considered as the saturation limit and adverse classification should not be required. Chronic testing, if required, should then be conducted at the practical saturation limit as this is the most realistic worst-case exposure scenario. If no adverse effects occur, the risk should be acceptable because higher aqueous exposure cannot occur. This could be substantiated by testing additional species. Assessment factors on no observed effect concentration estimates of toxicity have varied accordingly. The present study illustrates differences in toxicity values resulting from variation in test concentrations far above the water solubility of the test substance cannot be easily distinguished from the intrinsic substance toxicity [5]. Undissolved material present in the test media has the potential to exert adverse (physical) effects on test organisms, which are unrelated to intrinsic substance toxicity [2,3]. Examples of this are blocking of fish gill membranes, encapsulation/entrapment of daphnids, or the reduction of light intensity in algal tests. Also, the oral uptake of undissolved particles may lead to release of substances in the digestive tract and subsequently cause toxicity. Although it is possible to consider effects caused from testing above the solubility limit in the interpretation of the results, in practice such effects cannot be easily distinguished from the intrinsic substance toxicity and may confound test results. Furthermore, test concentrations far above the water solubility of the test substance can contain better soluble impurities whose effects might also confuse the interpretation of true substance toxicity. As a consequence, for a given test substance, the outcome of aquatic tests containing excess undissolved substance can vary considerably based on the way the test media were prepared and sampled. This variability is often observed in the aquatic

INTRODUCTION

Aquatic ecotoxicological tests with substances that are poorly soluble in water are conducted in a variety of ways, and the resulting L(E)C-values (lethal [or other effect] concentrations) may differ considerably. The use of solvents or dispersants to aid the dissolution of a test substance in regulatory aquatic ecotoxicological tests is an area in which there has been conflicting guidance [1–4], further complicated because individual testing guidelines often provide their own recommendations. Yet, it is generally well known that the method by which a test solution is prepared and introduced into the test vessel, as well as the treatment of any undissolved test substance, can have a significant impact on the results and reliability of the test. Also, the expression of the effect data as analyzed concentration values, and how these are generated, needs to be considered carefully. The present study illustrates differences found between specific testing methodologies with substances that are poorly soluble in water (i.e., solution preparation and test conduct) and resulting toxicity values, using the herbicide diflufenican as an example, and offers harmonized guidance for the conduct and reporting of regulatory aquatic ecotoxicological tests, with particular relevance to plant protection products.

BACKGROUND CONSIDERATIONS

The purpose of an aquatic ecotoxicological test is to determine the toxicity of a substance in aqueous solution, that is, truly dissolved in the test medium (note that substances or formulations specifically designed for release as a suspension or emulsion are beyond the scope of the present study). This is advocated because generally only the dissolved fraction of a substance is bioavailable for uptake and transfers across biological membranes, and hence is responsible for the true aquatic toxicity [5]. Undissolved material present in the test media has the potential to exert adverse (physical) effects on test organisms, which are unrelated to intrinsic substance toxicity [2,3]. Examples of this are blocking of fish gill membranes, encapsulation/entrapment of daphnids, or the reduction of light intensity in algal tests. Also, the oral uptake of undissolved particles may lead to release of substances in the digestive tract and subsequently cause toxicity. Although it is possible to consider effects caused from testing above the solubility limit in the interpretation of the results, in practice such effects cannot be easily distinguished from the intrinsic substance toxicity and may confound test results. Furthermore, test concentrations far above the water solubility of the test substance can contain better soluble impurities whose effects might also confuse the interpretation of true substance toxicity. As a consequence, for a given test substance, the outcome of aquatic tests containing excess undissolved substance can vary considerably based on the way the test media were prepared and sampled. This variability is often observed in the aquatic...
toxicity testing of nanomaterials and is currently the subject of intensive research [6–8]. As effect concentrations from tests with undissolved material may lead to misinterpretation of the intrinsic substance toxicity, such tests might be inappropriate to base regulatory decisions on; therefore, undissolved material should be separated from the test solution prior to organism exposure. The exception is tests with substances of such low solubility that determining the dissolved concentration is not feasible and where confounding (physical) effects can be excluded.

Analytical measurements to confirm concentrations are often made during aquatic tests, particularly in regulatory tests, and the manner of sample collection and preparation can have large consequences for the magnitude and usefulness of the test endpoint estimate. For example, it is currently recommended [1–4] that solutions are filtered or centrifuged prior to chemical analysis, to remove undissolved fractions (including, for example, feces, exuviae from the test organisms, or whole test organisms, e.g., algae). However, this has not necessarily been done in the past, resulting in test concentrations above the solubility limit of the test substance, but still showing acceptable analytical results within a reasonable percentage of nominal concentrations.

In certain instances, the use of solvents can be justified to aid the preparation of a stock solution. Occasionally, the use of solvents may even be preferable, for example, to aid stability of the test substance or to avoid excessive sonication of the test substance or exposure system. However, because of the potential for interaction with the test substance or test system (test organism plus exposure system) that may result in an altered response in the test (e.g., [9]), their use should be restricted to situations where no other acceptable method of media preparation is available. Stock solutions prepared with water miscible solvents are more amenable to adding to the test media and mixing, and therefore help to accelerate the preparation of saturated solutions for substances of low water solubility. The addition of solvents does not increase the solubility in water per se; however, the saturation limit in the water/solvent solution may be to some extent greater than the solubility in pure water. Nevertheless, any amount above the saturation limit will precipitate when the stock is added to the test media and the solvent concentration consequently diluted, which has the potential to cause adverse effects on the test organisms (see above). Thus, precipitates should be removed prior to the addition of the test organisms. It must be noted that there can be further substance-specific analytical aspects to consider. For example, some hydrophobic substances have a tendency to adsorb to glassware, filters, and centrifuge tubes, making sample preparation difficult and liquid substances may not be amenable to either centrifugation or filtration. Increasing amounts of solvent above the maximum recommended level (0.1 ml/L) is not advisable due to potential effects on the test system, such as toxicity to the test organism [2,3]. Solvents can also provide a carbon source promoting microbial growth in the test vessels, which can deprive test organisms of dissolved oxygen, cause pH shifts, entrap organisms within the microbial film, or contribute to the degradation or adsorption of the test substance.

Solvents commonly used in aquatic ecotoxicology and their toxicity to aquatic organisms are listed in the European Centre for Ecotoxicology and Toxicology of Chemicals document [3]. All these solvents have low acute toxicity to aquatic organisms, though this is not the sole basis for their selection (see the Suggestions section below).

CASE STUDY ON THE IMPACT OF TESTING METHODOLOGY

To illustrate the potential problems associated with the use of solubilizing agents in the preparation of test solutions and with the presence of excess test substance, we selected data for the herbicide diflufenican from the European Union review process [10], with permission of the registration holder. The values of the aquatic toxicity endpoints for this substance are summarized in Table 1. The L(E)C50 values (50% lethality [or effect] concentration) were highest when there was no analysis of test concentrations (and 1% dispersant used), or when unfiltered samples were analyzed. The water solubility limit of diflufenican is approximately 30 μg/L, subject to slight variation with temperature, pH, test medium, and water hardness. The older tests (1984/1985) have reported L(E)C50 values greatly above the solubility limit, up to 105,000 μg/L, when a combination of dispersant/solvent was used. Even the newer tests (1997/1999) on fish and Daphnia report results above the limit of solubility: up to 109 μg/L for fish with dimethyl formamide as solvent; and in excess of 240 μg/L for Daphnia tested with a nonspecified solvent and reported as “in excess of visual limit of aqueous solubility” [20]. These newer L(E)C-values were used in the risk assessment. Only the algal tests have values at or below the solubility limit because the substance is highly toxic to algae, as expected for an herbicide. In the consideration below, we use the term “saturation limit” rather than solubility limit to clarify that we are referring to the solubility limit under the specific test conditions and in the specific test medium, which may vary from the reported solubility limit in pure water.

The range of magnitude of the results with diflufenican may be explained by the solubilizing agent (solvent was used or not, or a solvent was used in combination with a dispersant); and the presence and treatment of undissolved test substance (either no excess material was present (testing below saturation limit), or excess material was present (testing above saturation limit) and concentrations were determined from samples containing undissolved test substance (i.e., without separation of the dissolved fraction of the test substance), or excess material was present, but the concentration of the test substance was analytically determined based solely on the dissolved fraction (i.e., recommendation of the Guidelines [1–4]).

With the exception of the final option (i.e., excess material present but analytical determination based solely on the dissolved fraction), all of the above-mentioned scenarios were used with the testing of diflufenican and directly contributed to the variability of the results in fish and Daphnia tests. By contrast, the algae test results were very consistent for each class of algae because the testing was conducted at or below the saturation limit; thus, the true toxicity of the dissolved substance was identified in these studies. This example illustrates how variations in testing methodology can result in completely different L(E)C-values when testing above the solubility limit. In the case of diflufenican, this is not critical because the algae endpoints drive the risk assessment; however, in other cases there is currently scope for the use of incorrect, erratic L(E)C values and misrepresenting toxicity with potentially critical consequences.

REGULATORY CONSEQUENCES OF TESTING AT SOLUBILITY LIMIT

A review of existing regulatory requirements for plant protection products raises the question of whether testing only up to the solubility limit (or in practical terms, the saturation
Poorly soluble chemicals in aquatic toxicity tests

Table 1. Standard fish, Daphnia, and algae endpoints from the European Union review of the example substance, diflufenican

<table>
<thead>
<tr>
<th>Species</th>
<th>Test type</th>
<th>Solvent used</th>
<th>Repeated endpoint (µg/L)</th>
<th>Test year</th>
<th>Endpoint basis</th>
<th>Standard fish (Rainbow trout) 96 h static</th>
<th>DMF, no concentration stated</th>
<th>LC50: 79000</th>
<th>1994</th>
<th>No analysis of test concentrations; solvent control not specified</th>
<th>Mean measured concentrations</th>
<th>LC50: >100000</th>
<th>1998</th>
<th>Mean measured concentrations</th>
<th>LC50: >100000</th>
<th>1998</th>
<th>No analysis of test concentrations; solvent control not specified</th>
<th>European Union.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinus carpio (Common carp)</td>
<td>96 h static</td>
<td>Solvent used, but not specified</td>
<td>Solvent used, but not specified</td>
<td>1997</td>
<td>LC50: >100000</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
</tr>
<tr>
<td>Scenedesmus subspicatus (Green alga)</td>
<td>72 h static</td>
<td>No solvent</td>
<td>Solvent used, but not specified</td>
<td>1997</td>
<td>LC50: >100000</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
</tr>
<tr>
<td>Anabaena flos-aquae (Blue-green alga)</td>
<td>72 h static</td>
<td>Solvent used</td>
<td>Solvent used, but not specified</td>
<td>1997</td>
<td>LC50: >100000</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
</tr>
<tr>
<td>Navicula pelliculosa (Diatom)</td>
<td>72 h static</td>
<td>Solvent used</td>
<td>No solvent</td>
<td>1997</td>
<td>LC50: >100000</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>Mean measured concentrations</td>
<td>LC50: >100000</td>
<td>1998</td>
<td>No analysis of test concentrations; solvent control not specified</td>
</tr>
</tbody>
</table>

CONSEQUENCES FOR AQUATIC RISK ASSESSMENT

What does this mean for the environmental risk assessment where exposure concentrations are calculated based on theoretical mass transport and dilution? To give an example, for a pesticide with a water solubility of 50 µg/L, if the L(E)C50-values for fish, *Daphnia*, and algae are all >50 µg/L, and the calculated predicted environmental concentration (PEC) in nearby surface water is 120 µg/L (based on spray drift calculation, thus yielding an amount of substance entering the water irrespective of its solubility in water), then the short-term risk is normally (currently) considered unacceptable. This may lead to rejection of use, restrictions such as buffer zones, or trigger further higher-tier testing (with potential animal welfare implications).

However, in this example, the calculated PEC is an artifact and unlikely to reflect any potential dissolved bioavailable concentration as it is above the solubility limit, and in reality, there were no unacceptable short-term effects at the saturation limit in the standard test species. Therefore, any indication of risk in the short-term risk assessment is misleading.

In practice, pesticide active ingredients are never applied alone but as formulations, a complex mixture of the active ingredient and other components (often including dispersants and/or solvents) designed to enhance the utilization of the
product. Usually, L(E)C50-values from short-term tests with the formulated product are available and more relevant to the risk assessment in this case. The OECD Guidance Document [2], also referred to by the European Commission Guideline [13], states that "studies on the formulated product might also be an appropriate way to deal with poorly soluble compounds especially if no effects occur at the solubility limit." If a substance exceeds its saturation limit in the environment, precipitated material will most likely become integrated with other particulate solids. Therefore, another option is to conduct tests in water-sediment systems [13]. Effects of adsorbed or precipitated substance can be evaluated by testing sediments-dwelling or bottom-feeding organisms. In either case, if additional testing with vertebrates is required, there are animal welfare issues to consider.

According to the OECD Guidance Document [2], "it is important to note that an absence of acute toxic effects at the saturation concentration cannot be used as the basis for predicting no chronic toxicity at saturation or at lower concentrations. Where chemicals are predicted to have no acute toxic effects at saturation, it is recommended to consult the regulatory agency. Some regulatory authorities may prefer to omit acute toxicity tests and proceed straight to chronic toxicity testing." The latter is also in line with the recommendation of the European Commission [13]. The European Centre for Ecotoxicology and Toxicology of Chemicals document [3] proposes the following conservative approach for an initial risk assessment: "The assessment factor usually applied to acute data should be applied to the highest measured soluble concentration (or solubility limit). If the risk assessment using the resulting value indicates an inadequate risk characterization ratio, then it may be necessary to determine the chronic toxicity of the substance." This would result in less animals being tested, compared to a conventional tiered testing approach. However, applying the usual assessment/safety factors to test endpoint values at the saturation limit might lead to very low regulatory acceptable exposure values, which are not based on any observed ecotoxicological effects [14]. Therefore, the use of assessment factors with endpoints from tests with substances that are poorly soluble in water should be considered carefully.

A similar approach is already proposed for classification and labeling. The European Centre for Ecotoxicology and Toxicology of Chemicals [3] recommends that if the substance is not toxic at the solubility limit, then it should not be classified. The OECD [15] clarifies this further by recommending that for substances not toxic at the solubility limit but with high biaccumulation potential and failing the criteria for "readily biodegradability," a default precautionary classification should be given or a chronic test should be conducted at the solubility limit to check if there is any hazard.

However, it is notable that the European Water Framework Directive states regarding environmental quality standards (EQS): "...the EQS set up in this Annex are expressed as total concentrations in the whole water sample" [16]. The EQS are derived from aquatic ecotoxicological studies and, in general, the lower the endpoint estimates of toxicity, the lower the EQS (i.e., the lower the concentration allowed in monitored water bodies before concern is triggered). Therefore, once again, this could lead to a disadvantage in testing only up to the saturation limit with substances that are poorly soluble in water. We consider that this situation should be reevaluated because if the tests are conducted correctly below the saturation limit but the monitoring is conducted on total concentration, there is an unscientific comparison made between different measurement units. In this case, a justification may be possible to test above the saturation limit to use an equivalent exposure metric to derive the EQS, though again, this has implications for animal welfare if additional vertebrate tests are required.

SUGGESTIONS

The following suggestions are based on existing guidance [1–4], complemented with the experience of the authors and the acknowledged colleagues.

Solubility limit (saturation) under test conditions

Toxicity tests should be conducted only up to the maximum dissolved concentration under the test conditions (i.e., the saturation limit), or in case of a refined assessment for plant protection products, to the maximum environmental concentration (e.g., by testing organisms exposed to water transported from the field). The saturation concentration under test conditions of a substance that is poorly soluble in water can differ substantially from the reported water solubility (e.g., in double distilled water by OECD Guideline 105 [17]) depending upon the specific test conditions (e.g., pH, temperature, ionic strength, and chelating characteristics of the medium). Especially in marine test media, differences can be dramatic [18]. Analytical results at very low concentrations are sensitive to small perturbations of the exposure system and may vary considerably, or for extremely poorly soluble chemicals, current analytical techniques may be insufficient to experimentally determine water solubility or saturation concentrations. Differences in the saturation concentration between test designs should not necessarily be considered invalid as long as all reasonable efforts have been made to achieve the target concentration of dissolved test substance.

To determine the maximum dissolved concentration under test conditions for substances that are poorly soluble in water, or for substances of unknown physicochemical behavior in aqueous solutions, preliminary solubility trials need to be performed mimicking test conditions and the results of the experiment reported as suggested by the OECD [2]. The solubility trials should include separation steps (centrifugation or filtration) prior to analytical measurements to assure true test solutions containing dissolved concentrations.

Means of generating saturated test solutions

Solvents are the most common means to accelerate and facilitate the dispersal of the test substance into the test medium and may be essential for preparing stock solutions of hydrolytically unstable or viscous substances, although the use of a solvent does not increase solubility in the test medium per se. Other means of enhancing test substance dissolution in the test water are preferable; every effort should be made to avoid the use of a solvent or to eliminate the solvent prior to testing. For example, a stock solution of the test substance in a volatile solvent (e.g., acetone) directly added to the test vessel and evaporated to leave an evenly distributed thin layer of test substance [19] will maximize the interaction with water molecules and enhance the kinetics of dissolution. Other techniques include, for example, prolonged stirring or high-shear mixing, ultrasonication, temperature adjustment, pH adjustment, generator systems such as saturation columns, and new passive dosing techniques in which the test substance is added at excess quantity but in an inert carrier substrate (e.g., silica gel), from which it moves passively and continuously into the water according to the solubility limit [20,21]. The choice of technique...
Poorly soluble chemicals in aquatic toxicity tests

Both solvents have a low volatility and a high ability to dissolve many organic substances, while reducing the problem of oxygen depletion commonly seen with ready biodegradable solvents like acetone, ethanol, or methanol [3]. This recommendation is based on the authors’ practical experience and is supported by current guidance [3]. However, the final choice of solvent should be guided by the properties of the test substance and the toxicity of the solvent to the test organism. Toxicity values of some typical solvents are given in the European Centre for Ecotoxicology and Toxicology of Chemicals document [3] and in the review by Hutchinson et al. [26].

Solvent concentration

If a solvent must be used, the concentration must not exceed 0.1 ml/L for short-term tests or 0.02 ml/L in reproduction tests or tests with potential endocrine active compounds (solvents may impact reproduction or biomarkers of endocrine disruption at < 0.1 ml/L [26]). The concentration should be below 1/10th of the no observed effect concentration (NOEC) of the solvent depending on the test species and the length/type of toxicity test [2], although data for solvent toxicity is not available for all test species and test types. This is complicated by individual test guidelines, which provide differing limits. For example, the OECD acute fish guideline allows the use of up to 100 mg/L of a solubilizer in a test [27]. This is not the same as the 0.1 ml/L in the OECD fish early-life stage or Daphnia reproduction test guideline [28,29], or the OECD Guidance Document [2], as the associated mass of solvent depends on its density. Although solvent concentrations of 0.1 ml/L for acute tests and 0.02 ml/L in chronic tests represent the uppermost allowable limits, efforts should be made to keep the amount of solvent used in any test as far below these limits as possible.

Solvent control

When solvents are included in the test solutions, the concentration of solvent should be the same in all treatments, and in the solvent control. Every good test design should also include a negative (test medium) control without solvent, though the ethics of using additional animals must also be considered when testing vertebrates. The solvent control is the preferred basis to compare with treatment groups for calculating endpoint toxicity values because it is more similar to the treatment groups than the negative control. Alternatively, if there is clearly no statistically significant difference between the solvent and negative controls, both controls can be combined for greater statistical power [30]. However, it should be noted that this is in contradiction to a U.S. EPA memorandum [31], which requires the negative control to be used as the basis for comparing with treatment groups to calculate endpoint toxicity values and rejects the test if there is a significant difference between the solvent and negative control. Further, a significant difference between negative control and solvent control is more common in studies with multiple endpoints than in studies with only one or two endpoints, as there is a higher chance for type II errors. In addition, a solvent control alone cannot distinguish potential synergistic or antagonistic interactions between the solvent and the test substance; thus, such tests may over- or underestimate true toxicity [32]. In any case, not incorporating solvent in the test solutions is the best way to avoid these problems.

Dispersants

The use of dispersants such as surfactants and emulsifiers should be avoided (e.g., Tween 80, Cremophor RH-40, meth-
Secondary difficult-to-test characteristics

Poorly water-soluble substances may have secondary characteristics that make them even more difficult to manage in aquatic tests (e.g., adsorption, volatility, hydrolytic instability, photodegradability, liquids, etc.). In these cases, additional modifications to standard test designs are required to properly test such substances. A complete discussion of these characteristics and potential mitigation measures is beyond the scope of the present study, but some problems with regard to adsorption are discussed below. The tendency to adsorb to available surfaces is often encountered with poorly soluble substances; at low concentrations, even a minor degree of adsorption can cause dramatic variations in analytically measured concentrations of dissolved substance. Adsorption can be exacerbated if test vessel surfaces become coated with a microbial film as a result of the use of solvents or from substances that form a substrate for such growth. Chemicals adsorbed to test containers are typically not available to test organisms, but chemicals adsorbed to food particles will be available to pelagic fish or invertebrates. In addition, when a chemical adsorbs to sediment it may be available to sediment-dwelling organisms, benthic fish, or bacteria. In many cases, adsorption can be reduced by equilibrating the test vessels with test solutions prior to exposure (i.e., conditioning) and/or by the use of flow-through systems [2]. Very strong adsorption may require testing in water-sediment systems with relevant benthic organisms or the use of a formulated product (for pesticides). In algal tests, the growing cell population provides an increasing surface area for adsorption. Algae are not amenable to flow-through testing; however, substance adsorbed to the algal biomass is still considered bioavailable and should be considered as part of the exposure concentration analyses [40]. The relevance of adsorptive loss must be considered in the context of biological exposure and analysis of a biological negative control (a test replicate without organisms) can be helpful in this regard. The testing approach for substances that are poorly soluble in water with secondary difficult-to-test characteristics should be decided on a case-by-case basis, possibly using preliminary tests of those characteristics, and, if applicable, in consensus with the appropriate regulatory authority [1–4].

Pragmatic testing approach

A pragmatic approach to establishing the toxicity of a substance that is poorly soluble in water, while considering animal welfare as well as logistic and financial constraints, would consist of some preliminary tests prior to definitive testing. A preliminary toxicity test (or range-finding test) at widely spaced concentrations should include one treatment of a saturated solution, which may also contain undissolved substance. In case dissolved concentrations are not measurable, a treatment containing undissolved substance provides some empirical evidence that saturation was maintained over the exposure period, although if toxicity is observed physical effects may be responsible. If insufficient data are available to predict solubility in the test medium, but a suitable analytical method is available to measure dissolved concentrations, the preliminary toxicity test can optionally be combined with a preliminary solubility trial including separation steps (e.g., centrifugation or filtration) prior to analytical measurements to approximate the maximum dissolved concentration (saturation limit) under test conditions.

Then, if no toxicity is observed in the preliminary test, perform the definitive test using appropriate concentrations, but with any excess material removed (to exclude potential physical effects) and base the test results on the measured dissolved fraction. In case dissolved concentrations are not measurable, conduct the test in the presence of undissolved material and state the results as no effects at the saturation limit, and estimate that saturation limit by the best available method of calculation and/or observation. If toxicity was observed in the preliminary test, perform the definitive test using appropriate concentrations, but with any excess material removed (to exclude potential physical effects) and base the test results on the measured dissolved fraction. In case dissolved concentrations are not measurable, test a dilution series from a saturated stock, then state the test results as percentages of a saturated solution, and estimate the saturation limit by the best available method.

Risk assessment considerations

Short-term toxicity testing to the solubility limit should be given due consideration in the risk assessment. Where reported test endpoint values are above the limit of solubility and no adverse effects have been observed (e.g., LC50 or NOEC > saturation limit), retesting should not be necessary, but the endpoint value should be considered as greater than the solubility limit under test conditions (the saturation limit). Further acute testing or adverse acute classification should not normally be required if there were no adverse acute effects at the saturation limit (i.e., the NOEC is equal to or above the saturation limit). For pesticides, if formulation data are available these can be used as part of the weight of evidence. Further, chronic testing for such compounds should only be required if there is a likelihood of prolonged exposure (e.g., in case of multiple applications for plant protection products, or when the DT50 in water is > 2 d), if there is a potential for bioaccumulation (indicated by a logPow > 3), or to substantiate the fact that the risk for substances not toxic at the saturation limit is acceptable. In the latter case, performing a chronic test only at the saturation limit (a “limit” test) should be an acceptable design and is justifiable in terms of animal welfare. Where substances are predicted to have no acute toxic effects at the saturation limit, it is recommended to consult the regulatory agency, as they may prefer to proceed straight to chronic toxicity testing. If there are no effects at the saturation limit
Poorly soluble chemicals in aquatic toxicity tests

Environmental Toxicology and Chemistry 31, 2012 7

Environ. Toxicol. Chem. 31, 2012 7

Poorly soluble chemicals in aquatic toxicity tests (or realistic water solubility limit in the field) in the tests with the three standard trophic levels (fish, invertebrate, algae), it may be suggested to test more taxonomic groups (preferably nonvertebrates) for reinsurance, and lower the assessment factor to one so that the toxicity exposure ratio (TER) is acceptable (TER = 1) implying no risk at the water solubility limit.

A new assessment method worthy of consideration in the future is the general exposure threshold of no concern (ETNC) for related groups of substances [14]. A risk assessment can be performed by comparing the aquatic exposure threshold of no concern (ETNCaq) value with the aquatic exposure levels of substances that are poorly soluble in water (i.e., at most up to the saturation limit). Accordingly, the aquatic exposure levels of substances with water solubility below the ETNCaq will not exceed the ecotoxicological no-effect concentration; therefore, their risk can be assessed as being negligible.

CONCLUSIONS

Solvents have been used in tests with poorly soluble substances in a variety of ways over the years, and nondissolved (excess) material has also been dealt with in a variety of ways. This can result in variable and potentially erroneous endpoint toxicity values. Guidance is available on dealing with poorly soluble substances in regulatory aquatic ecotoxicology tests, but it is sometimes contradictory in individual test guidelines. Therefore, these test guidelines should refer to a general guidance document; preferably an updated version of the OECD guidance document [2]. In addition, the use of endpoint toxicity values from these tests in risk assessments is problematic. Hence, a clear and globally accepted guidance document covering both testing and appropriate endpoint selection for substances that are poorly soluble in water would improve aquatic testing strategy and risk assessment for plant protection products and help to reduce the number of animals tested. The present study gives suggestions, based on available regulations, guidelines, and experience, and therewith provides input for the development of consistent guidance. However, there will always be substances with a combination of characteristics making them difficult to test, requiring case-by-case approaches.

Acknowledgement—The authors are grateful to the following people for useful comments on the draft manuscript: A. Barletta-Bergan (GAB-consult); P. Campbell, J. Gonzalez-Valero, M. Hamer, and A. Hosmer (Syngenta); M. Dorgerloh and K. Romijn (Bayer CropScience); E. Schneider (Feinchemische Schweda); P. Dohmen, S. Zok, S. Pawlowski, and others at BASF22.

REFERENCES

Q1: Author: Please provide a reference for this quote.

Q2: Author: Please define all acronyms in the Acknowledgement section.
USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software

Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html. For help with system requirements, go to: http://www.adobe.com/support/.

Once you have Acrobat Reader on your PC and open the proof, you will see the Commenting Toolbar (if it does not appear automatically go to Tools>Commenting>Commenting Toolbar). If these options are not available in your Adobe Reader menus then it is possible that your Adobe version is lower than 7 or the PDF has not been prepared properly.

PDF Annotations (Adobe Reader version 7 or 8) – Commenting Toolbars look like this:

(PC, Adobe version 7)

(PC, Adobe version 8, right-click on title bar (Comment & Markup) to show additional icons)

(Mac)

PDF Annotations (Adobe Reader version 9)

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a preference setting in order to edit.

The default for the Commenting toolbar is set to ‘off’ in version 9. To change this setting select ‘Edit | Preferences’, then ‘Documents’ (at left under ‘Categories’), then select the option ‘Never’ for ‘PDF/A View Mode’. (the Commenting toolbar is the same as in version 8).
TO INDICATE INSERT, REPLACE, OR REMOVE TEXT

- Insert text

Click the ‘Text Edits’ button on the Commenting toolbar. Click to set the cursor location in the text and simply start typing. The text will appear in a commenting box. You may also cut-and-paste text from another file into the commenting box. Close the box by clicking on ‘x’ in the top right-hand corner. It can be deleted by right clicking (for the PC, ctrl-click on the Mac) on it and selecting ‘Delete’.

- Replace text

Click the ‘Text Edits’ button on the Commenting toolbar. To highlight the text to be replaced, click and drag the cursor over the text. Then simply type in the replacement text. The replacement text will appear in a commenting box. You may also cut-and-paste text from another file into this box. To replace formatted text (an equation for example) please Attach a file (see below).

- Remove text

Click the ‘Text Edits’ button on the Commenting toolbar. Click and drag over the text to be deleted. Then press the delete button on your keyboard. The text to be deleted will then be struck through.

HIGHLIGHT TEXT/MAKE A COMMENT

Click on the ‘Highlight’ button on the commenting toolbar. Click and drag over the text. To make a comment, double click on the highlighted text and simply start typing.

ATTACH A FILE

Click on the ‘Attach a file’ button on the commenting toolbar. Click on the figure, table or formatted text to be replaced. A window will automatically open allowing you to attach a file. To make a comment, go to ‘General’ and then ‘Description’ in the ‘Properties’ window. A graphic will appear indicating the insertion of a file.

LEAVE A NOTE/COMMENT

Click on the ‘Note Tool’ button on the commenting toolbar. Click to set the location of the note on the document and simply start typing. Do not use this feature to make text edits.

REVIEW

To review your changes, click on the ‘Show’ button on the commenting toolbar. Choose ‘Show Comments List’. Navigate by clicking on a correction in the list. Alternatively, double click on any mark-up to open the commenting box.

UNDO/DELETE CHANGE

To undo any changes made, use the right click button on your mouse (for PCs, Ctrl-Click for Mac). Alternatively click on the ‘Edit’ in the main Adobe menu and then ‘Undo’. You can also delete edits using the right click (Ctrl-Click on the Mac) and selecting ‘Delete’.

SEND YOUR ANNOTATED PDF FILE BACK TO WILEY VIA etcprod@wiley.com

Save the annotations to your file and return as an e-mail. Before returning, please ensure you have answered any questions raised on the Query form that you have inserted all the corrections: later inclusion of any subsequent corrections cannot be guaranteed.

Note: Comprehensive instructions are provided within your PDF file: to access these instructions please click on the Comments and Markup menu in the main toolbar, or click on Help.
IMMEDIATE RESPONSE REQUIRED

Your article will be published online via Wiley's EarlyView® service (www.interscience.wiley.com) shortly after receipt of corrections. EarlyView® is Wiley's online publication of individual articles in full text HTML and/or pdf format before release of the compiled print issue of the journal. Articles posted online in EarlyView® are peer-reviewed, copyedited, author corrected, and fully citable via the article DOI (for further information, visit www.doi.org). EarlyView® means you benefit from the best of two worlds--fast online availability as well as traditional, issue-based archiving.

Please follow these instructions to avoid delay of publication.

□ READ PROOFS CAREFULLY
- This will be your only chance to review these proofs. Please note that once your corrected article is posted online, it is considered legally published, and cannot be removed from the Web site for further corrections.
- Please note that the volume and page numbers shown on the proofs are for position only.

□ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
- Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

□ CHECK FIGURES AND TABLES CAREFULLY
- Check size, numbering, and orientation of figures.
- All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

RETURN □ PROOFS
□ PAGE CHARGE FORM
□ CTA (If you have not already signed one)

RETURN IMMEDIATELY AS YOUR ARTICLE WILL BE POSTED ONLINE SHORTLY AFTER RECEIPT

QUESTIONS?

Production Editor
E-mail: etcprod@wiley.com

Refer to journal acronym and article production number (i.e., ETC 00-001 for ETC ms 00-001).
SOCIETY OF ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY – COPYRIGHT TRANSFER AGREEMENT

Please sign and return immediately to the Editorial Office

Environmental Toxicology and Chemistry

G. A. Burton, Editor-in-Chief

University of Michigan, School of Natural Resources and Environment, 440 Church Street, Room 2536, Ann Arbor, Michigan 48109, USA. Email: etc@setac.org • Phone: +001 734-764-6988 • Fax: +001 734-763-3603
c/o ET&C Web: setacjournals.org.

Manuscript No.:_______________________________ Issue (Editorial Office only):_____________________________

Corresponding Author (“Contributor”): __

Co-Contributors: __

Manuscript Title (“Contribution”): __

for publication in Environmental Toxicology and Chemistry (the "Journal") published by Wiley-Blackwell or any successor publisher ("Wiley-Blackwell") on behalf of the Society of Environmental Toxicology and Chemistry ("the Society").

If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. Copyright Assignment The Contributor assigns to the Society, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute, and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

B. Citation and Credit Reproduction, posting, transmission, or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to the Society and Wiley-Blackwell as Publisher, suitable in form and content as follows: [Title of Article], [Contributor], Environmental Toxicology and Chemistry [Volume/Issue], Copyright © [year] Society of Environmental Toxicology and Chemistry, Wiley-Blackwell Publisher. Links to the final article on Wiley-Blackwell’s website are encouraged where appropriate.

C. Retained Rights by Contributor or Contributor Employer Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure, or article of manufacture described in the Contribution.

D. Permitted Uses of Contribution by Contributor

1. Submitted Version. The Society licenses back the following rights to the Contributor in the version of the Contribution as originally submitted for publication:
 a. After the final version is published, the right to self-archive on the Contributor’s personal website or in the Contributor’s employer’s institutional repository or archive on both intranets and the Internet. The Contributor may not update the submitted version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer-reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].
 b. The right to transmit, print, and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Requests for permission should be addressed to the permissions department at journalsrights@wiley.com. Wiley-Blackwell has agreements with certain funding agencies governing re-use of the accepted version. For details of those agreements, and other offerings allowing open web use, see http://www.wiley.com/go/funderstatement. NOTE: NIH grantees should check the box at the end of this document. Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. The accepted version will be made publicly available 12 months after publication. For more information, see www.wiley.com/go/nihmandate.

3. Final Published Version. The Society hereby licenses back to the Contributor the following rights with respect to
the final published version of the Contribution:

a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided that no fee is charged, and further provided that there is no systematic distribution of the Contribution, e.g., posting on a listserv, website, or automated delivery.

b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.

c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor’s institution or place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g., commercial seminars). Electronic posting of the final published version in connection with teaching or training at the Contributor’s institution or place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.

d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork, and Selected Text (up to 250 words).

a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, the Society encourages but does not require linking back to the final published versions.

b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:
 i. Full and accurate credit must be given to the Contribution.
 ii. Modifications to figures, tables, and data must be noted. Otherwise, no changes may be made.
 iii. Re-use may not be made for direct commercial purposes, or for financial consideration to the Contributor.
 iv. Nothing herein shall permit dual publication in violation of journal ethical practices.

E. Contributions Owned by Employer

1. If the Contribution was written by the Contributor in the course of the Contributor’s employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company or employer, which must sign this Agreement (in addition to the Contributor’s signature). In such case, the company or employer hereby assigns to the Society, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, the Society hereby grants back, without charge, to such company or employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's intranet. Copies so used may not be resold or distributed externally. However, the company or employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the company or employer on a public-access website may be done only with Wiley-Blackwell’s written permission and payment of any applicable fees. Also, upon payment of Wiley-Blackwell’s reprint fee, the institution may distribute print copies of the published Contribution externally.

F. Government Contracts

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires.

G. Government Employees

1. U.S. Government Employees: A contribution prepared by a U.S. federal government employee as part of the employee’s official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor’s signature line) and return this Agreement. If the Contribution was not
preparing as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

2. U.K. Government Employees: The rights in a contribution prepared by an employee of a UK government department, agency, or other Crown body as part of his or her official duties, or which is an official government publication, belong to the Crown. Authors must ensure they comply with departmental regulations and submit the appropriate authorization to publish.

3. Non-U.S., Non-U.K. Government Employees: If your status as a government employee legally prevents you from signing this Agreement, please contact the Editorial Office.

H. Copyright Notice The Contributor and the company or employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

I. Contributor’s Representations The Contributor represents that the Contribution is the Contributor’s original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell’s permissions form or in the Journal’s Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent, or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

J. Signature All Contributors must sign below and check the box or boxes that apply. If your Contribution was written during the course of employment, your employer must also sign where indicated. **NOTE:** NIH grantees must also check the NIH grantee box.

[] Contributor-owned work
[] Contributing author authorized to sign for all
[] U.S. Government work
[] U.K. Government work (Crown Copyright)
[] Other Government work
[] NIH Grantee

[] Company- or Institution-owned work
 (made-for-hire in course of employment)

Contributor’s signature ___________________________ Date

Type or print contributing author name and title

Co-contributor’s signature ___________________________ Date

Type or print co-contributor’s name and title

Company or Institution (Employer-for-Hire) ___________________________ Date

Authorized signature of Employer ___________________________ Date
Environmental Toxicology and Chemistry
Page Charge Form

PLEASE RETURN WITH YOUR PAGE PROOFS TO: John Wiley & Sons, 111 River Street, Hoboken, NJ 07030.
ATTENTION: Jeffrey Collins (etcprod@wiley.com). Telephone: (201) 748-8864

Article Number: Authors:

Please calculate your page charge based on the information in the table below.

<table>
<thead>
<tr>
<th>Select one</th>
<th>Author Category</th>
<th>Pages 1-6</th>
<th>Pages 7-12</th>
<th>Pages 13 and beyond</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical Review Author</td>
<td>FREE</td>
<td>$50 per page</td>
<td>$150 per page</td>
</tr>
<tr>
<td></td>
<td>SETAC member in good standing</td>
<td>FREE</td>
<td>$50 per page</td>
<td>$150 per page</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>$50 per page</td>
<td>$150 per page</td>
<td>$150 per page</td>
</tr>
</tbody>
</table>

SETAC member in good standing: Membership is current at the time of submission and has been continuous for 2 years prior to submission
Other: Non-member, or membership is not current at the time of submission or has not been continuous for 2 years prior to submission

Total article length ____________ pages

Cost for pages 1-6 ____________

Additional cost for pages 7-12 ____________

Additional cost for pages 13 and beyond ____________

TOTAL page charges ____________

Form of payment (in $US drawn from a US Bank; payable to Wiley-Blackwell):
- Visa • MasterCard • Check • Purchase Order No. _____________________

Card # __________________________ Expiration Date ________________________

Signed __________________________ Date __________________________

Institution___
Name___
Address __

BILL TO (if your payment does not accompany this form):

Name: __________________________ Institution __________________________
Address: ___
Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=ETC

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about ‘Pay-Per-View and Article Select’ click on the following link: http://wileyonlinelibrary.com/ppv